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1.0 Introduction

This document reports on research into applying genetic
algorithms to function decomp051tlon in Pattern Theory. The
Mission Avionics Division of the Avionics Directorate at
Wright Laboratories (WL/AART) is developing an engineering
design theory for algorithms, based on the structure or
"pattern" of a function called Pattern Theory. The term
function refers to the traditional mathematical function
associating inputs with specific outputs. Pattern Theory
has relevance to a number of disciplines to which these
functions may relate, including Pattern Recognition,
Artificial Intelligence, data compression, cryptography, and
Switching Theory. Decomposed Function Cardinality (DFC)
refers to the complexity of a function. The DFC is found by
reducing the function to its simplest representation.
Function decomposition optimizes the function with respect
to the DFC using a systematic approach. The measure of DFC
has been shown to correlate well with traditional measures
of computatlonal complexity such as program length, time and
circuit size complexity. The ablllty to reduce functions to
their simplest representation in the most optimal way can
simplify designs, reduce computational time, and lower
costs.

Function decomposition groups or partitions input
variables for a function into smaller functions. Functions
can be represented by two dimensional arrays, by treating
the input variables as labels for the rows and columns of
the arrays. These arrays are called partition matrices and
several may be generated for each function by selecting
different variables for the rows or columns. This selection
procedure is called partition selection and can be used to
reduce functions to their optimal decomposition. Among the
partition selection approaches that can be used to obtain
the DFC are random or chance procedures and correlation of
the values of input variables and values of the function.
Mission Avionics' personnel have found a more promising
technique by using genetic algorithms. These algorithms use
search procedures modeled after the biological process of
natural selection and genetics. 1In the application of
genetic algorithms to function decomposition, information
learned from previous decompositions guides further
decompositions. Genetic algorithms tend to reduce the
search space and guide the search more effectively than
other methods.

Section 2 of this report gives some background on
Pattern Theory and its development. Also Section 2 more
clearly defines Function Decomposition and DFC and gives
some examples. Partition selection in the decomposition
process is described, including possible techniques for
optimizing the decomposition. Background is also given on




Genetic Algorithms, including the definition of heuristics
and parameters used in genetic algorithms and a comparison
with their biological equivalents.

The third section describes specifically the
application of genetic algorithms to partition selection in
the function decomposition process. This includes the
representation of the problem, the techniques for performing
a structured search, and the evaluation of individual
solutions. A description is given of the various parameters
that were varied in this program and the different
heuristics which were applied. A comparison is made between
the two primary genetic algorithm approaches taken to
perform partition selection. One approach is referred to as
the baseline genetic algorithm, following more standard
genetic algorithm procedures, and the other is referred to
as the structured approach. The various approaches chosen
to implement these genetic algorithms to optimize function
decomposition are detailed, particularly those that deviate
from classic genetic algorithm procedures.

Section 4 describes experiments performed to evaluate
the application of the baseline and structured search
algorithms to function decomposition. Since computational
time would have severely limited this program, a number of
decompositions were simulated without exhaustive computer
runs. The process used for this simulation is described. A
comparison is made for determining the DFC between simulated
decompositions and another estimation procedure.

The document concludes by offering conclusions from the
experiments and then offers recommendations for the
direction of future work.




2.0 Background

2.1 Pattern Theory

Pattern Theory describes an algorithm design paradigm
being developed at Wright Laboratory. It attempts to help
automate the algorithm design process. Pattern Theory uses
a function decomposition algorithm to reduce complicated
functions to their more simple components. By using
function decomposition it is possible to design an algorithm
that implements a function given only a partial list of
inputs and outputs. Functions decompose in a number of
ways. The function decomposition algorithm conducts an
iterative and recursive search until the simplest
decomposition is found. This search automatically designs an
algorithm for reconstructing the original function using the
simplest decomposition. It simultaneously provides a
measure of the intrinsic complexity of the original
function. This measure of comﬁlexity is called decomposed
function cardinality or DFc.[1

The idea of using the simplest representation is
alternately known as the principle of parsimony or Occam's
razor. The belief that the simplest explanation or
representation is best has been a basic tenet of the
philosophy of science. It may be the only thing that allows
us to think, do math or science, or make any predictions
about the world at all.

Function decomposition as used in pattern theory
provides a potentially powerful technique to automate
algorithm design. This has a myriad of possible
applications for automated code generation, circuit design,
cryptography, data compression, image processing and machine
learning. This technique has been demonstrated in more than
one thousand experiments with impressive results. These
experiments used small binary functions of less than ten
input variables.

A problem exists for functions with more input
variables. The search space increases exponentially with
the number of input variables. Consequently the computer
time required to find the DFC becomes prohibitive. At
present, there is no direct method that guarantees finding
the DFC without exhaustive search. There are a number of
methods that can potentially solve this search problem.
Some promising techniques that limit the search space or
guide the search are being investigated. Among these are
genetic algorithms.

Considerable research has recently been performed in
the area of genetic algorithms. They can be very useful for
combinatorial hard optimization problems. This is the type




of problem we are facing in function decomposition. Using
an exhaustive search to find a solution is really no better
than chance. Genetic algorithms purport to be an
improvement over chance. The amount of improvement depends
on the nature of the problem and the adjustment of
parameters and heuristics in the genetic algorithm. This
report documents the potential for using genetic algorithms
for function decomposition.

An introduction to function decomposition and DFC is
presented in Pattern Theory: An Engineering Paradigm for
Algorithm Design [1]. The work reported here is part of
Pattern Theory II. A summary of this expanded work and
other results will be published in a later technical report.
The following discussion of function decomposition and
simple example are presented here for the sake of
completeness and should aid the reader who is unfamiliar
with the decomposition process. It also defines terms used
in the application of genetic algorithms to function
decomposition.

2.1.1 Function Decomposition (The Simple Explanation)

Function decomposition can apply to any type of finite
function: binary, numerical symbolic, etc. For the rest of
this discussion and the following example, we will
concentrate on binary functions. A binary function may be
represented as a string, one dimensional array or lookup
table. Table 2.1 shows a table representation of a binary
function. This table will be referenced again later in an
example of the function decomposition process illustrating
table representations of functions and subfunctions. For
this explanation of the process, simple diagrams will be
used.

Table 2.1. A Binary Function Expressed as a String.

0000000000000000000000000000000011111111111111111111111111111111
0000000000000000111111111111111100000000000000001111111111111111
0000000011111111000000001111111100000000111111110000000011111111

00110011001100110011001100110011001100110061100110011001100110011
0101010101010101010101010101010101010101010161010101010101010101

a
b
c
d 0000111100001111000011110000111100001111000011110000111100001111
e
f
F

| ©0060011000001000011000001000000001100000106000000003000000000000

In general if there are N input variables to a binary
function then the number of elements in the table
representation is 2N. The number of elements is also
referred to as the cardinality of the function. Such a
function can be diagrammed as shown in Figure 2.1.
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Figure 2.1. Diagram of a Function with N Input Variables
and Table Size of 2N.

Some functions can be represented as a composition of
smaller functions or subfunctions. Suppose the function in
Figure 2.1 can be split into two functions. M of the input
variables form the input to Function A. Now the output of
Function A and the remaining N-M+1 inputs (Function B) form
the input to Function F. Two new tables are formed in the
alternative representation. The sum of the cardinality of
the new functions is 2M + 2(N-M+1l) | The decomposition is
diagrammed in Figure 2.2.

Function A M

Function B (N-M+1)

Figure 2.2. Function F Decomposes to a Table Size of 2M +
2 (N-M+1) .

A good decomposition is one that simplifies the
representation and offers a cost savings, i.e., if the sum
of the new cardinality is less than the original cardinality
2M 4+ 2(N-M+1) < 2N, gyppose that Function A further
decomposes into Functions C and D (see Figure 2.3). Figure
2.4 shows the case where Function B decomposes. If both
Functions A and B decomposed the case would appear as shown

in Figure 2.5. The sum of the new cardinality would be
2P 4+ 2(M-P+1) 4+ 2Q 4+ 2(N-M-Q+2)




Function C P ____

Function D (M-P+1)

Function B (N-M+1)

Figure 2.3. Function A Decomposes to a Table Size of 2P +
2 (M-P+1).

Function A M =

Function EQ

F

'.

Function G N-M-Q+2

Figure 2.4. Function B Decomposes to a Table Size of 2Q +
2 (N-M-Q+2) .

Function CP o

Function D (M-P+1)

Function E Q

Function ¢ (N-M-Q+2) ___|

Figure 2.5. Both Functions A and B Decompose.

There is one final case to consider. Sometimes a
number of variables can be removed, but more than one




function is produced. In this case two or more (m for
example) tables of size M are produced (see Figure 2.6).
The sum of the new cardinality is m#*(2M) + 2(N-Mim) ;s
long as m*(2M) + 2(N-Mim) jg jess than 2N this is a good
decomposition.

m* (M) T

| ” N-M+m

=

N-M+m

Figure 2.6. Decomposition Producing Two or More Functions
of Table Size M.

2.1.2 Function Decomposition Example

The following is an illustration of the decomposition
process using a binary function represented by the string or
table shown previously in Table 2.1. N or the number of
input variables is 6 in this case and the cardinality is 2N
or 64. The binary input variables are a, b, ¢, 4, e and f.
F is the function.

This function can also be represented by two
dimensional arrays. This is accomplished by treating the
input variables as labels or indices for the rows and
columns of the arrays. These arrays are referred to as
partition matrices. Several possible partition matrices of
F are shown in Tables 2.2, 2.3 and 2.4.

Partition Matrices of the Function F.

Table 2.2. Table 2.3. Table 2.4.
a 00001111 a 00001111 a | 0000000011111111
b 00110011 b 00110011 b | 0000111100001111
c 01010101 d 01010101 ¢ | 0011001160110011
def cef d | 0101010101010101
000 | 00010100 000 | 00000000 ef
001 | 80101000 001 | 011010600 00 | 0001001000100000
010 | 00101000 010 | 01101000 01 | 6100100016000000
011 | 00000000 011 | 00000000 10 | 0160100010000000
100 | 01000000 100 | 01101000 11 | 0000006000000000
101 | 10000000 101 | 00000000
110 | 10000000 110 | 00000000
111 | 00000000 111 | 00000000




Different partition matrices are generated by selecting
different input variables to label the rows and columns of
the array. The selection of variables to use for row or
column labels is called partition selection.

After examining the partition matrices in Tables 2.2,
2.3, and 2.4, one notices that in each partition matrix some
of the columns are identical. Since some of the columns are
identical, the number of unique columns in a partition
matrix is less than the total number of columns. The number
of unique columns in a partition matrix is called column
multiplicity. Column multiplicity is important, since it
can be used to determine if a function will decompose at a
cost savings. If the number of unique columns can be
represented by fewer binary variables than is required to
represent the number of columns in the original partition
matrix, then the function usually can be broken down into
several smaller functions. A second condition for
decomposition requires that the number of binary variables
needed to represent the number of unique columns is less
than the number of rows in the partition matrix.

Consider the partition matrix shown in Table 2.2. It
has five unique columns. Since three binary variables are
required to express represent decimal five, this partition
matrix cannot be decomposed at a cost savings.

The partition matrix in Table 2.3 has only two unique
columns. This requires one binary variable. A new
component function g is created by assigning binary labels
to the unique columns as shown in Table 2.5. Notice that g
is a function of column variables. The original function
can now be expressed as a function of the row variables and
g (Table 2.6).




Table 2.5. New Component Function g Created by Assigning
Binary Labels to the Unique Columns in This Partition
matrix.

a 00001111
b 00110011
d 01010101
cef
000 (00000000
001 |01101000
010 (01101000
011 00000000
100 | 01101000
101 00000000
110 | 00000000
111 | 00000000
g 01101000

Table 2.6. Original Function Expressed as Function of Row
Variables and g.

a 00001111 C 0000000011111111
b 00110011 e 0000111100001111
d 01010101 £ 0011001100110011
g |01101000 g 0101010101010101

F ]0001010001000000

The sum of the cardinality to express g and F
(23+24=24) is already less than the cardinality to express
the original function (26=64). However, we are not done
yet. We try to decompose F and g again. The function g
cannot be decomposed any further, but F can be decomposed
again. This time we select c, e, and f as column variables
and arrive at another intermediate function h (Table 2.7).

Table 2.7. Intermediate Function h Obtained by Decomposing
F Again.

00001111
00110011
01010101

00000000
01101000
01101000

SirPol O




Finally, we express F as a function of g and h. The
intermediate function g and h are functions of the input
variables. Table 2.8 shows the final decomposition. Neither
F, g nor h can be decomposed any further. The sum of
cardinality is 20 (23+23+22) instead of 64.

Table 2.8. F Expressed as a Function of g and h.

a 00001111 c |ooo001111 g |0011
b (00110011 e [00110011 h |0101
d |01010101 f 01010101 F |0001
g 01101000 h 01101000

What if there are more than two unique columns as in
the partition in Table 2.4, then functions g and h would be
created (see Table 2.9). Again these new functions are only
a function of column variables. The functions g and h are
decomposed again in Table 2.10 and the original function can
now be expressed as a function of the row variables and the
new functions.

Table 2.9. Functions g and h Created From the Partition in

Table 2.4.
a |000000001112111111
b 10000111100001111
c |0011001100110011
d |0101010101010101
ef

00 {0001001000100000
01 |0100100010000000
10 |0100100010000000
11 {0000000000000000
g {0100100010000000
h |0001001000100000

Table 2.10. Original Function Expressed as Function of Row
Variables and New Functions.

a |0000000011111111 a |0000000012111111
b [0000111100001111 b |0000111100001111
c |0011001100110011 c |0011001100110011
d /]0101010101010101 d |0101010101010101
g [0100100010000000 h |0001001000100000

10




Note the Xs in the final function shown in Table 2.11.
These represent %"don't care" conditions. There is no
combination of input variables that can produce any output
here, since the intermediate functions are never "one"
simultaneously. The sum of cardinality for the
decomposition at this level is 40 (23+23+22+22+24).

Table 2.11. Final Decomposition of Partion in Table 2.4.

a | oooo01111 a | ooo01111 c| o011 c| o011
b | 00110011 b | 00110011 i]| o101 j | o101
d | 01010101 d | 01010101 g| 0100 h | 0001
i | 01101000 j | 01101000
ejl0000000011111111
f|0000111100001111
glo0o11001100110011
h|0101010101010101
FI[010X001X001X000O0X

Notice that i and j are identical functions of a, b and
d. They can be shared in the final decomposition as Figure
2.7 shows. The final sum of cardinality for this
decomposition is, therefore, 32 (23+22+22+24). This point
is important because it will later be used to calculate the
cost of decompositions.

|

E
K

G

Figure 2.7. Diagram of Final Decomposition of Partition in
Table 2.4, Showing the inputs a, b, and d can be shared.

Summing the cardinality of the new functions (20 in
Table 2.8 and 32 in Table 2.11 with a, b and d shared) shows
that both are less than the cardinality of the original
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functions (64 in both Tables 2.3 and 2.4). The sum of
cardinality of the new functions generated in Table 2.8 is
smallest. This is an example function decomposition
process. It is applied for all partition matrices and again
to each of the new functions generated until the
representation with the smallest sum of cardinality is
found. The number of elements (cardinality) needed for this
minimal representation is the measure of complexity used by
pattern theory. It is called decomposed function
cardinality or DFC.

2.2 The Combinatorial Problem

The number of possible non trivial partition matrices
for a given binary function is the cardinality minus two.
For the example, there were 62 partition matrices for the
function in Section 2.1.2. Only a small number of the
possible partition matrices were shown to illustrate a few
points about the decomposition process. Table 2.12 shows
the minimum sum of cardinality that can result from all
possible initial partition matrices of the original
function. Note that there are several partition selections
that lead to the DFC (20) and many others that lead to some
intermediate value between the original cardinality and DFC.
The importance of this representation of the partition
space, as it is called, will be apparent in later sections
detailing the work performed in this program. The zero and
one values of the binary input variables are used in Table
2.12 to designate the variables as initial row or column
partition selections, respectively.

Table 2.12. Minimum Sum of Cardinality that Can Result from
All Possible Initial Partition Matrices of the Original

Function
alo 0 0 0 1 1 1 1
b |O 0 1 1 (0} (0} 1 1
c |0 1 0 1 (0] 1 0 1
def
000 64 64 64 64 64 64 64

001|164 64 64 64 64 64 64 64
010164 64 64 64 64 64 64 64
011)j64 20 64 32 64 32 64 32
100|164 64 64 64 64 64 20 32
101]64 64 64 64 64 64 32 32
110|]64 64 64 64 64 64 32 32
111]64 32 64 32 64 32 32
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There does not appear to be any direct method of
selecting a partition that will decompose to the DFC. All
the partition matrices must be examined. As mentioned, the
number of possible partition matrices for a given binary
function is 2N - 2 or the cardinality minus two. This
increases exponentially as N, the number of input variables,
increases. Each of these partition matrices will have a
number of elements that must be compared in calculating
column multiplicity. This also increases exponentially.
This rapidly becomes a computatlonally intense problem as
the number of input variables increases. The computational
burden increases even more, since each new component
function that is generated must also be decomposed.

The probability of finding the DFC without using any
information about the function, the partition space or
previously tried decompositions is no better than random
draw or "chance without replacement." It's like trying to
pick a black ball out of a container that has a few black
balls and a large number of white ones. Initially the
probability of picking a white ball is very high. As more
white balls are selected the chance of getting a black ball
becomes greater. The following equation illustrates this.

The probability, P, of finding the DFC on the ith try:

= Ndfc/(N + 1 - i)

where:

Ndfc is the number of partition matrices which lead to
the DFC, and

N is the total number of partition matrices.

As the search continues, the probability of finding the
DFC increases. The probability, P, of finding the DFC
by the ith try is:

N-N4afctl

p=1 =-IIP [ (N-Ngfc+1-1) / (N+ 1 - 1i)]
=1

If we had some a priori knowledge about the
distribution of partition selections that led to the DFC, we
could make more intelligent partition selections. If we
could use information about cardinality as we made partition
selections, we could improve our chances of finding a DFC
more quickly. The experiments conducted in this program,
which will be reported in later sections, compare some
techniques for utilizing known information to make wiser
partition selections. These techniques will be compared to
a pure "chance without replacement" approach, which does not
try to base partition selection on any previous information.
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2.2.1 Partition Space

The array shown in Table 2.12 is slightly rearranged in
Table 2.13 by exchanging the labels c and d. Two
dimensional graphic representations of Tables 2.12 and 2.13
are shown in Figures 2.8 and 2.9 respectively. In Figures
2.8 and 2.9 a higher stack of blocks represents a better
decomposition. There appears to be some form of structure
in Figure 2.8. The structure becomes more obvious in Figure
2.9. The difference between Figures 2.8 and 2.9 is only a
convenience of representation. There is no a priori way of
determining which selection of variables for axis labels
will make the structure more apparent. The structure that
will be produced by any function is unknown until the
decompositions are performed.

The same phenomenon is shown for a slightly more
complex function in Figures 2.10 and 2.11. A typical
partition space for an eight variable function is shown
graphically in Figure 2.10. There appears to be some
structure, but it is not obvious. Figure 2.11 shows the
same function with the labels rearranged to make the
structure more obvious. This representation of the function
is characterized by narrow ridges and plateaus. Gradient
techniques typically used for finding maxima or minima do
not work well with this type of function due to the large
number of discontinuities. The gradient technique is most
useful when there are gradual changes leading to maxima and
minima. These figures show a two dimensional representation
of an N dimensional space, where N is the number of input
variables.

Table 2.13. Rearrangement of Labels ¢ and d in Table 2.12

alo 0 0 0 1 1 1 1
b|o 0 1 1 0 0 1 1
d|o 1 0 1 0 1 0 1
cef
000 64 64 64 64 64 64 20

001164 64 64 64 64 64 64 32
01064 64 64 64 64 64 64 32
01164 64 64 64 64 64 64 32
10064 64 64 64 64 64 64 32
10164 64 64 64 64 64 64 32
110]164 64 64 64 64 64 64 32
11120 32 32 32 32 32 32
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Figure 2.8. 2D Representation of Partition Space from Table
2.12.

Figure 2.9. 2D Representation of Partition Space from Table
2.13.
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Figure 2.10. 2D Representation of a Typical Partition Space
of an Eight Variable Function.

%

A
B SNEANIN

B LA ER, TR
S S SRS S SRS Sh) 3

[ S 6]

o <
ANANAY  BRUMRNAT BN

Figure 2.11. 2D Representation of the Same Eight Variable
Function With Labels rearranged to Make the Structure in
Partition Space More Obvious.
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2.2.2 Search Techniques

A number of techniques for searching the partition
space exist. They usually involve generating a partition,
evaluating it, and then trying another. The problem with

many of these techniques is that they use little information

about the function, the decompositions that were previously
found or structure of the partition space. When this
information about the function is not used, it is like
trying to select a good partition by pure chance. The
following is a description of various techniques for
searching the partition space, some which use information
about the function and others that do not. Comments are
also provided about their efficacy.

2.2.2.1 Estimation of DFC

Estimate the DFC based on column multiplicity or some
other measure of the likelihood of a particular partition
leading to a low complexity. Then only decompose partition
matrices that are likely to decompose well. This relieves
some of the computational burden and can be used in
combination with some of the following techniques. This
technique often finds the DFC or near optimal
decompositions. However, it does not always find the
optimal decomposition.

2.2.2.2 Random (Chance)

Randomly generate partition selections. This is
obviously no better than chance. These techniques may be
viable if there are a large number of partition matrices
that decompose to the DFC. A variation of the chance
procedure is termed "chance without replacement." "Chance
without replacement" is equivalent to an exhaustive search,
where nothing is done to improve the search procedure.

2.2.2.3 Decreasing Row to Column Ratio

Select partition columns first using only one variable
for a column, then all combinations of variables two at a
time, then three at a time and so on up to the number of
inputs minus one at a time. It formed the basis for a
version of the Advanced Function Decomposition algorithm
used in phase one of Pattern Theory. There is no reason to
believe that this is any better than chance. In fact it
appears to be worse than chance. This technique will be
documented in a technical report titled Pattern Theory II.
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2.2.2.4 Increasing Row to Column Ratio

Select partition matrices first using only one variable
for a row, then all combinations two at a time for rows,
then three at a time and so on up to the number of inputs
minus one at a time. There is empirical evidence that this
is much better than chance. Selecting partition matrices in
an increasing row to column ratio may capitalize on some
underlying structure in the partition spacelZ2].

2.2.2.5 Correlation

Perform a correlation of the values of input variables
and values of the function. Then select groups of input
variables with the same correlation coefficients for either
rows or columns. This technique differs from those
previously mentioned. It often significantly limits the
search space based on information about the function. There
is evidence that this technique usually leads to low
complexity decompositions and is much better than chance for
finding the DFC. However, there is no guarantee that any of
the partition matrices selected by this method will find the
optimal DFC and in some cases this method does not provide
any information to guide the search. A technical paper
describing this technique is provided in Appendix A.

2.2.2.6 Genetic

First, generate some decompositions by one of the
previous methods. Then partially exchange some of the row
or column variables in partition matrices that previously
decomposed to low complexity. This should generate new
partition matrices that are more likely to decompose to low
complexity. This is the basic principle behind the
application of genetic algorithms to partition selection.
It essentially uses information about previously found
decompositions. Genetic algorithms appear to be a promising
technique for partition selection and were the focus of
experiments conducted in this program. The next section
gives some background information on genetic algorithms.

2.3 Genetic Algorithms

This section describes genetic algorithms. It gives
the general flow of the algorithm. It also provides the
definition, description and effects of some of the
parameters and heuristics used in genetic algorithms.

2.3.1 Comparisons with Biological Evolution
Genetic algorithms are an attempt to find solutions to
particularly difficult problems by using modeling mechanisms

patterned after biological evolution. A collection or pool
of candidate solutions to a given problem is referred to as
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the population. Each member of the population, representing
a particular solution to the problem, is called a
chromosome. A representation of the problem space is
selected that has interchangeable units or features that
characterize the solution. The interchangeable units are
equivalent to genes in the biological model. The specific
value that a gene takes on is called an allele and often
represents some characteristic of the solution.

Biologically, the chromosomes are string-like bodies
containing the genes of an individual. Each gene refers to
some characteristic of the individual such as eye color.
The allele is the specific representation of the
characteristic, such as blue or brown for the gene
designating eye color. In genetic algorithms each solution
or chromosome is made up of a string of bits, integers, or
characters. The individual bits, integers, or characters
are the genes and the specific value of each gene is the
allele.

An initial population is generated by random or
heuristic methods. The population is then evaluated to find
the chromosomes that yield good solutions. These
chromosomes are selected for survival and reproduction,
usually by random draw. Chromosomes yielding less fit
solutions, tend to die off. This is similar to survival of
the fittest in Darwinian evolution. Alleles can be
exchanged between selected chromosome pairs, as in
biological crossover, or genes may be modified, as in
mutation. Thus, a new population is generated. Each new
population is called a generation. Each generation will
contain some of the chromosomes that were good solutions
from the old population and new chromosomes that should have
a high probability of being better solutions to the problem.
This process is repeated for each new generation until some
terminating condition is reached. In each new generation
the number of better solutions increases and should
predominate the population. After a number of generations,
the population should converge to the best solutions. A
high-level flow diagram of the genetic algorithm process is
provided in Figure 2.12.[2
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Figure 2.12. Basic Genetic Algorithm Process.

2.3.2 Components of Genetic Algorithms

There are three major components to the application of
genetic algorithms: representation, evaluation, and the
mechanics of reproduction. "In order to employ a genetic
algorithm the analyst must supply three items: 1. The
representation of the problem as a string of digits, 2. A
means of evaluating individual solutions, 3. The specifics
of the crossover operator."[3

19




2.3.2.1 Representation of the Problem

The representation of individual chromosomes can be
strings of binary digits, lists of integers, real numbers,
rules or other symbols. Binary digits are considered to be
the most general representation and evidence exists that the
binary representation is optimal.[4:5] Representation of a
problem or solution is perhaps the most formidable aspect of
designing a genetic algorithm. It is one of the areas that
require expertise in the problem domain and can seriously
affect the performance of the algorithm. Important features
of the problem must be represented in such a way that
desirable solution characteristics are propagated, and
undesirable characteristics suppressed.l3] The
representation for chromosomes in the program discussed in
this report uses binary strings with the same number of
digits as the number of input variables for a function. As
Section 3.0 will explain, the value of each individual
allele represents an initial row or column partition
selection for the corresponding binary input variable.

2.3.2.2 Evaluating Individual Solutions

Evaluation of individual solutions or determining the
fitness of the chromosomes can be performed in a number of
ways. If the algorithm is to perform some game or task,
tournaments can be conducted with the winners or good
performers selected. This is similar to competition and
survival of the fittest in biologic evolution. If the
algorithm is attempting to compute some function or solve an
optimization problem that can be computed in some other way,
then the chromosomes that are closest to the actual result
are selected. This is like exploitation of an environmental
niche in biologic evolution. Of course, all this implies
that some independent measure of performance exists.

2.3.2.3 Crossover Operator

Before examining some details of the evaluation and
selection process, such as the number of survivors or how
many new members are generated, an examination of
reproduction mechanisms will be performed. This examination
focuses specifically on the crossover operator. Crossover
is a procedure, whereby chromosome or binary string pairs
exchange alleles to produce new chromosomes that may provide
better solutions to the problem. Crossover techniques for a
binary string are fairly standard. Single and double
crossover are most commonly used in practice. These
techniques are illustrated in Tables 2.14 and 2.15.

In single crossover (Table 2.14) a crossover point is
randomly selected at the same position in two binary
functions or chromosomes, referred to as Parents A and B.
Child AB is produced by selecting the alleles in front of
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the crossover point from Parent A and the alleles following
the crossover point from parent B. Often a reciprocal
alleleomorph Child BA is produced by selecting the alleles
in front of the crossover point from Parent B and the
alleles following the crossover point from Parent A.

Table 2.14. Single Crossover.

Parent A [{01001010 [010101001010010100
Parent B |10010101 |001010010010010100

Child AB |01001010 |001010010010010100
Child BA |10010101 |010101001010010100

In double crossover (Table 2.15) two crossover points
are randomly selected. Child ABA is produced by selecting
the alleles in front of the first crossover point and in
back of the last crossover point from Parent A. The alleles
between the first and second crossover points are selected
from Parent B. Again a reciprocal alleleomorph, Child BAB,
can be produced by selecting the alleles in front of the
first crossover point and in back of the last crossover
point from Parent B. The alleles between the first and
second crossover points are selected from Parent A.

Table 2.15. Double Crossover.

Parent A 01001 |0100101 j01001010010100
Parent B 10010 |1010010 |10010010010100

Child ABA |[01001 {1010010 [01001010010100
Child BAB |10010 {0100101 }10010010010100

2.3.2.4 Mutation Operator

Typically in genetic algorithms each fundamental unit
or gene has a finite probability of changing. This
increases the variability of a population. In binary
representations mutation usually consists of changing a bit
or bits. Mutation can avoid solutions that lock on local
minima and result in a search of the entire problem space.

2.3.2.5 Other Parameters and Heuristics

Once the criteria for the representation, evaluation,
and crossover operator have been defined, there are still a
number of parameters and heuristics that influence the
algorithm's performancel4l. These parameters often interact
with each other, and the design of a genetic algorithm
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becomes an iterative process. A description of these
parameters is given below.

Population size: The population size chosen affects
the global performance and efficiency of a genetic
algorithm. A large population is desirable to insure
sufficient coverage of the problem space. A small
population is likely to prematurely converge on a local
rather than global solution.

Crossover rate: This is defined as the percentage of
the population that may be modified by the crossover
operator. If the crossover rate is too high, good
performers are removed faster than selection can produce
improvements. If the rate is too low, the search may
stagnate.

Mutation rate: The rate or probability of a mutation
occurring. A low level of mutation prevents a gene from
becoming locked into a particular allele and helps to insure
that the entire problem space is searched. A mutation rate
that is too high results in a random search.

Generation gap: The generation gap is the percentage
of the population that is replaced each generation. A
generation gap of one (100%) means that the entire
population would be replaced. A generation gap that is too
high could result in good performers being removed. The
other extreme is a generation gap of zero. This would mean
no replacement and is quite useless, since there would be no
possibility of evolution toward a solution.

Fitness factor: This is a measure of performance of
the individual chromosomes. It is often used to control
both survival and reproduction. Survival and reproduction
can also have separate fitness factors.

Selection strategy: The logic or heuristics that
select individuals for survival and reproduction. Two
common strategies are select for survival first or select
for reproduction first. 1In select for reproduction first,
all the chromosomes have a chance of reproducing. In select
for survival first only those which survive reproduce.

Elitist strategy: A survival strategy which insures
that the best performers survive.

Scaling factor: A scaling factor can be used to adjust
the fitness factor to prevent early dominance by particular
individuals, so the problem space is sufficiently explored.
The scaling factor normalizes or provides a measure of
relative fitness. If the scaling factor is too low the
search may be near random and very slow. If this factor is
too high convergence may occur at a local minimum.

22




Population diversity during evolution is important and a
scaling factor helps maintain this diversity.

Ranking: An alternative to Fitness and scaling which
ranks or sorts members of the population based on
performance.

Evolutionary programming: A type of genetic algorithm
which uses high mutation rates, often excludes crossover
completely, a small population, elitist strategy, and a very
low generation gap.
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3.0 Application of Genetic Algorithms to Partition Selection

This section describes how genetic algorithms were
applied to partition selection in function decomposition.
Genetic algorithms seem to be a real natural for partition
selection. They provide a powerful tool for finding near
optimal answers in combinatorial-type problems without
exhaustively searching through potentially large solution
spaces. This type of optimization is precisely the problem
encountered in partition selection as a search for the
simplest decomposition is conducted. Specific examples why
genetic algorithms provide a useful mechanism for partition
selection includes the ease with which row and column
selection can be represented by a binary string. Also, the
cardinality in function decomposition provides a natural
fitness factor that must be defined when developing a
genetic algorithm. Additionally, genetic algorithms are not
gradient techniques, which as mentioned earlier, do not work
well with the search space in this type of problem.

In applying genetic algorithms to partition selection
it was necessary, as mentioned in Section 2.3.2, to properly
address the representation of the problem, the evaluation of
individual solutions, and the mechanics of reproduction such
as the crossover operator. The following describes the two
primary approaches taken to define these characteristics as
well as other genetic algorithm parameters and heuristics
examined in this program. Both of the algorithms chosen
used some evolutionary programming techniques. The approach
referred to as the structured genetic algorithm was highly
evolutionary. This algorithm varied more from methods
classically used in applying genetic algorithms. The other
genetic algorithm was referred to as the baseline genetic
algorithm. The differences between the two approaches will
be discussed with special attention given to the variations
from classical methods. Several design decisions were made,
because of the nature of the application, that may have
limited the full evaluation of genetic algorithms in some
cases. In other words, a complete parametric analysis was
not performed. Section 4.0 will later provide a comparison
of the results from both the baseline and structured genetic
algorithm approaches.

3.1 Representation of the Problem

As previously mentioned, binary strings are favored in
theory as well as in practice to represent chromosomes. In
a like manner, for the partition selection problem in
function decomposition, chromosomes can be represented by
binary strings. Recalllng the example in Section 2.2.1,
Table 3.1 shows the minimum sum of cardinality that can
result from all possible initial partition matrices of the
original function represented. The table shown is a
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representation of the partition space for a function with
six binary input variables. In the genetic algorithms
developed in this program chromosomes were used to specify
locations in such a partition space. Each location in this
space correspondingly refers to a specific initial partition
selection. To specify a chromosome, each input variable
(a,b,c,d,e and £ in this example) is assigned a position in
a binary string. The binary string has as many bits as
there are input variables (six in this case). In the binary
representation a "one" means the corresponding input is
selected as a column variable and a "zero" means the input
is selected as a row variable. This provides a very natural
and compact way of defining the partition matrices to be
evaluated. In the genetic algorithms when a crossover or
mutation is performed the new chromosome represents a new
location in the partition space. Likewise, the chromosome
also represents another initial partition selection that
attempts to decompose the original function to a lower
cardinality.

Table 3.1. Two Dimensional Table Representation of the
Partition Space for a Function With Six Binary Input

Variables.
a 0 0 0 0 1 1 1 1
b 0 0 1 1 0 0 1 1
d 0 1 0 1 0 1 0 1
cef
000 64 64 64 64 64 64 20

00164 64 64 64 64 64 64 32
010 |64 64 64 64 64 64 64 32
011 |64 64 64 64 64 64 64 32
100 {64 64 64 64 64 64 64 32
101 |64 64 64 64 64 64 64 32
110 |64 64 64 64 64 64 64 32
111 |20 32 32 32 32 32 32

In the current example, the locations in the partition
space and corresponding initial partition selections that
yield the DFC (lowest sum of cardinality) of 20 are
represented by the following chromosomes:

Binary a b c d e £
Variables

Chromosome 1 1 1 0 1 0 O
Chromosome 2 0O 0 1 0 1 1

In one optimal initial partition selection a, b and d should
be selected as column variables and ¢, e, and f should be
row variables. In the other optimal partition selection a,
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b and 4 should be row variables and ¢, e and f should be
selected as column variables. A decomposition starting with
these initial partition selections will lead to subfunctions
having the lowest sum of cardinality possible.

3.2 Evaluating Individual Solutions

Evaluation of individual solutions, or fitness of the
chromosomes, is also quite natural. It can be done by simply
performing the function decomposition of the partition
specified by the chromosome and obtaining the sum of
cardinality. The chromosome yielding a partition with the
lowest cardinality is the most fit. Column multiplicity or
partially decomposing a function can also be used as
evaluation factors to save the computation of doing the
multi level decomposition. However, if these factors are
used, the result is an estimate rather than actual
cardinality. A simulated DFC and an estimate of DFC based
on one level of decomposition were used as evaluation
factors in this effort.

3.3 Crossover Operator

This leaves the specifics of the crossover operator.
Single and double crossovers were tried in this program.
Uniform crossover was also tried in the baseline genetic
algorithm. The following example (Table 3.2) illustrates
uniform crossover in a chromosome corresponding to a
function with 26 input variables. In uniform crossover
Child AB is produced by randomly selecting alleles from
Parent A or B. A reciprocal alleleomorph was produced by
selecting alleles from the opposite parent.

Table 3.2. Uniform Crossover.

Parent A 01 001010010101 001010010100

Parent B 1 0010101001010010010010100

|
|
Child AB 1100001000001 0010010 010100
alleles babaaaaaabaabbbbbabaababbhb

Child BA 00011101011101001010010100

alleles ababbbbbbabbaaaaababbabaaa
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A structured crossover operator was tried (Table 3.3)
in the structured genetic algorithm. This technique is
named as such, because it provides a more structured search.
In this form of crossover the different alleles are counted.
The crossover point is not random, but each child receives
approximately one half the different alleles from each
parent. In each generation the number of differences is
reduced which should speed up convergence of the algorithm.

Table 3.3. Structured Crossover.

Parent A 000 01000 01000101000 0010100
Parent B 000 10101 00001001001 0010100
differences XXX X X XX X
crossover
Child AB |000 01000 00001001001 0010100
Child BA 000 10101 01000101000 0010100

second generation

Parent A |000 01 000 010001010000010100

Child BA | 000 10 101 010001010000010100
XX X X

Child ABA |000 01 101 010001010000010100

Child BAA 000 10 000 010001010000010100

The genetic algorithms evaluated in this program were
intended to apply to large numbers of input variables.
However, to prevent population sizes from getting very
large, the duplication of chromosomes was not allowed.
Instead, when a mating produced a duplicate chromosome
several options were exercised:

a) Baseline Genetic Algorithm
o the mating was tried several more times with the
same parents or
o a mutation was produced
b) Structured Genetic Algorithm
o the duplicate chromosome was ignored and another
mating was tried with different parents, otherwise
the structured process would produce exactly the
same children
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3.4 Heuristics and Parameter Selection

Many other heuristics had to be established and
parameters set to apply the genetic algorithm methodology to
partition selection. BAmong these parameters and heuristic
strategies were those defined in Section 2.3.2.4 and
2.3.2.5. The following discussion specifies how these
parameters and strategies were applied to the partition
selection problem. This includes the establishment of the
initial chromosome population, selection strategies and
rates for reproduction, and the method used to judge the
fitness of the individual chromosomes. Both the baseline
and structured genetic algorithm approaches are addressed.

A summary of the differences between the two approaches is
given in Table 3.4. A good find refers to a chromosome
representing a partition that yields a new cardinality lower
than the original. The following discussion will further
clarify these comments.
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Table 3.4. Six Key Differences Between the Baseline and
Structured Genetic Algorithm Approaches to Partition

Selection.

BASELINE

STRUCTURED

Initial population is
generated by taking first
good find, compliment of
1st half and 2nd half of
first good find.

Po = 3 + #random bad finds

Po: # Chromosomes in
initial population.

Initial population is
generated by taking first
good find and individual
compliment of each of its
bits.

Po = #bits + 1 + #random

bad finds

Po: # Chromosomes in
initial population.

Each member of population
has some (tailored)
probability of reproducing
based on a fitness ranking.

Only the best reproduce in
an ordered fashion.

Population is never
reinitialized.

Population is reinitialized
whenever a better
chromosome is found.

Reproduction is via uniform
crossover.

Reproduction is via
structured single
crossover.

Mutations occur if after N
tries (usually a small
number like 2 or 3) parents
do not produce a new
chromosome.

Mutation never occurs.

No (real) terminating
condition. Search stops if
solution is found or after
2N generations

Terminates if all matings
of "best" occur and nothing
better is found. Algorithm
may terminate before
finding DFC.

29




3.4.1 Population Size and Setup

To form the initial population in both the baseline and
structured genetic algorithms, random chromosomes were
generated until one was found, which represented a
cardinality lower than the initial cardinality. All the
chromosomes were stored in a population array. A population
was then generated from the chromosome representing the
lowest cardinality. If the array became full the "least
fit" (highest cardinality) chromosomes were removed. No
upper limit was placed on population size in the genetic
algorithms actually evaluated. Also no tradeoff studies
were performed on how population size affects convergence of
the algorithm. Several methods for generating the initial
population and subsequent populations were tried:

1) The compliment of an existing chromosome was taken to
generate another member of the population.

00011101 Parent I
11100010 Compliment Parent II

2) In the baseline genetic algorithm the compliment of each
half of the parent was taken.

00011101 Parent A
11101101 Child A
00010010 Child B

It was hoped that by doing this a few good choices would be
found early. Several other variations of this method were
tried. One variation included dividing the Parent
chromosome into thirds and forming compliments of the
various sections.

00 | 0111 | 01 ©Parent A
11 {0111 10 Child C
00 | 1000 | 01 Child D

3) In the structural search algorithm the compliment of each
of the input variables was taken, one at a time to generate
the initial population:

000113101 Parent
10011101 child
01011101 C¢Child
00111101 c¢Child
00001101 Child
00010101 cChild
00011001 Chilad
00011111 cChild
00011100 cChild

rTQHEHOOWY
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The purpose of these methods was to set up an initial
population, which can explore the entire space. Since the
initial solution is complimented, some crossover can provide
any possible combination of row/column choices. Variation
1) provides the smallest initial population, but also has
the largest initial difference between chromosomes.
Variation 3) has the largest initial population with the
smallest difference between chromosomes.

As each new chromosome was generated, a comparison was
made with existing chromosomes in the population. If it was
not already in the population the new chromosome was placed
at the beginning of the population array. The population
was then either fully or partially sorted (ranked) by one of
the methods described below.

The following description of the sort procedures uses
letters to represent entire chromosomes. The numbers are
fitness values that are stored with each chromosome in the
genetic algorithms. The lower the fitness value, the "more
fit" the chromosome.

As an example, Chromosome A may be: 010101 with a fitness
value of 3

Chromosome B may be: 101101 with a fitness
value of 5

1) Full Sort:

A full sort was used in which the entire population was
sorted before reproduction occurred again. The following
example illustrates the full sort for a population of 8
chromosomes.

Before Sort A B C D E F
3 5 7 6 2 8
After Sort E A B D C F
2 3 5 6 7 8

This procedure was used in the structured genetic
algorithm. When a new chromosome was added, a chromosome at
the end of a full population array was dropped out of the
array as shown below.

Before sort A B C D E F
3 56 7 6 2 8
Chromosome G produced:
Add new chromosome "4" G A B C D E
Drop last chromosome "g" 4 3 5 7 6 2

After Sort

N
w
&~ Q
0w
oo
S0
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2) Partial Sort #1 (Compare each in sequence)

A partial sort procedure was used that begins with the
first chromosome in the population. This chromosome is
compared with the one directly following it in the
population. If it is less fit it moves backward in the
population. It is then compared with the next chromosome
and the same procedure is followed. Whenever it is more fit
than the chromosome directly following it, the more fit
chromosome retains its position. This represents one
partial sort cycle. Reproduction occurs between partial
sort cycles.

Before Sort A B C D E F

3 5 7 6 2 8
After Partial A B C E F D
Sort 3 5 6 2 7 8

This sort procedure was tried in the baseline genetic
algorithm. After a number of cycles this partial sort
results in a full sort. 1In this sort poor performers are
moved right to the end of the population and do not
reproduce. As in the full sort, a new chromosome at the
beginning of a full population array results in the last
chromosome being dropped.

Before sort A B C D E F
3 5 7 6 2
Chromosome G produced:
Add new chromosome "4" G A B C D E
Drop last chromosome "8" 4 3 5 7 6 2
After 1st Partial Sort A G B C D E
3 4 5 7 6 2
Chromosome H produced:
Add new chromosome "2V H A G B C D
Drop last chromosome "2" 2 3 4 5 7 6
After 2nd Partial Sort H A G B D C
2 3 4 5 6 7

3) Partial Sort #2 (Pairwise Flip)

This partial sort compares chromosomes within a pair
for fitness, beginning with the first two chromosomes in the
population. If the second chromosome is more fit it is
flipped to the first position in the pair. After one
pairwise sort through the entire population, reproduction
occurs.
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Before Sort

w
o W
S0
(Ol w)
N b
0

After Partial A B D C E F
Sort 3 5 6 7 2 8

This sort keeps chromosomes from being moved to the end
of the population too rapidly, since reproduction is based
on position in population and occurs between sort
operations. This procedure results in a slower sort than
the others and can even get stuck if nothing were added to
the population. However, new elements are placed at the
beginning of the population after each partial sort. As in
the other sort procedures, the last element is dropped from
the population when reproduction occurs if the population
array is full.

Before sort

w
N0
ou
N

!

Chromosome G produced:
Add new chromosome "4"
Drop last chromosome "8"

)
w P ($i M ee]
v w
N0
oo
N

After 1st Partial Sort

w
~Q
o W
R
N b
oo

Chromosome H produced:
Add new chromosome "2"
Drop last chromosome "6"

NR-
w
& Q
o w
N0
N B

After 2nd Partial Sort

o
w
& Q
v W
N b
RN

3.4.2 Crossover Rate

Only two members of the population were mated each
generation. Depending on the crossover scheme implemented
two or four children were produced. The crossover rate was
not varied from one generation to another.

3.4.3 Mutation Rate

No mutations were performed in the structured search
algorithm during reproduction. However, if a more fit
chromosome was generated the population was reinitialized.
This procedure effectively conducts a mini search around the
most fit chromosome.[3] 1In the baseline algorithm mutations
were performed, but not by the use of a set mutation rate.
Rather by the following rule: if several attempted matings
of a set of parents failed to produce a unique chromosome
not in the population, a mutation occurred. This mutation
consisted of changes to some of the common bits between
parents.
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3.4.4 Generation Gap

Since few children were produced the generation gap was
very low. The generation gap was kept low to retain good
solutions in the event the algorithm does not converge to
optimal. Near optimal solutions are desired.

3.4.5 Fitness Factor

The fitness factor for both genetic algorithms was
defined as the decomposed cardinality or DFC. Obviously,
the lower the cardinality the more "fit" the chromosome or
the better the decomposition.

3.4.6 Selection Strategy

The selection strategy was based on the order of the
population array and always employed select for reproduction
before survival. As mentioned, the population array was
sorted so the most "fit" chromosomes were at the front.
Conversely the last member of the array was the least "fit"
after a sort. Also the last member of an array was removed
each time a child was produced if the population array was
full. The selection strategy depicted in Figure 3.1 was
such that the probability of selecting a parent for
reproduction was biased toward the start of the array. This
figure shows a distribution for a population of 8
chromosomes. This selection strategy was referred to as a
"tailored probability." In general the chance of being
selected for reproduction improves with fitness, but not
strictly. 1In Figure 3.1 the lower the Fitness Factor or DFC
the "more fit" the chromosome. This figure represents a
population with hypothetical Fitness Factors 2, 4, 3, 5, 4,
6, 6, 6.
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Figure 3.1. Chance of Chromosome Being Selected Compared to
Fitness Factor for a Population of 8.

In the structured search each member of the population
was mated in an ordered fashion. Chromosomes representing
the lowest decompositions found so far were mated with other
"most fit" chromosomes. Each time a "better fit" was found,
the population was reinitialized. Several excursions were
tried in the structured algorithm which allowed mating of
slightly "less fit" members of the population. The details
and effects of these excursions will be described in a later
section.

In the baseline genetic algorithm several candidates
were selected for reproduction and those that had the fewest
different (but at least two) allele were mated. If mating
had been allowed when there was only one difference, the
children would be a duplicate of one of the parents.

3.4.7 Scaling Factor
The Fitness Factor was not adjusted, but as mentioned,

the most fit were moved to the beginning of the population
array.
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4.0 Experiment Description

In a true function decomposition a function is broken
all the way down to find the DFC. Since the time required
to perform full function decompositions was prohibitive in
this program, the DFCs were estimated or decompositions
simulated. The estimation procedure attempted to predict
the DFC without performing a full function decomposition.
The simulation procedure attempted to simulate a complete
function decomposition. It was not rigorous, but an attempt
to capture some of the effects that occur while doing a
decomposition. The structured genetic algorithm and the
baseline genetic algorithm were evaluated in experiments by
using both the simulation and estimation procedures. The
following discussion describes the simulation and estimation
procedures and the results of all experiments. The
experimental results include comparisons of computational
time to find the DFC between the two genetic algorithms and
"chance without replacement." The ability to find the DFC
and not some local minimum is scrutinized. Also, a
comparison with chance was performed of the ability of the
two genetic algorithm approaches to search increased numbers
of partition matrices for increasing numbers of input
variables. The influence of various genetic algorithm
parameters and heuristics were also evaluated in the
experiments.

4.1 Estimation Description

In the estimation procedure the algorithm would select
a partition and evaluate it by performing a single level of
decomposition. It would then estimate the cardinality for
each partition of the function, based on column
multiplicity. The cardinality was the sum of cardinality of
the subfunctions carried out to only one level. 1In the
example in Section 2.1.2 (Table 2.10) for instance,
functions g and h would not have been decomposed any
further. The resulting partition space would be "bumpier"
(have more peaks and valleys) than if the entire
decomposition had been performed. For example, recall
Figure 2.9 pictured again on the left in Figure 4.1. The
partition space resulting from use of the estimation
procedure in comparison would appear as shown on the right
in Figure 4.1.
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Figure 4.1. Comparlson of Partition Space Resulting from
Full Decomposition (Left) to that Resulting from Estimation
Procedure

The estimated data could result in what is referred to
as a positive decomposition. This results if the estimated
cardinality is higher than the original cardinality. In the
algorithm this positive decomposition could be allowed or
disregarded for experimental analyses. If the algorithm was
set to suppress the positive decomposition then the original
cardinality was used as the estimate. The estimation
procedure was tried for 26 functions in the experimental
analysis. Also, for the estimation procedure, only eight
variable functions were used.

4.2 Simulation Description

In the simulation procedure the user decides which sets
of input variables must be grouped in columns, in rows, or
can be mixed. The algorithm then attempts to find the
row/column assignments. It makes trial row and column
selections by breaking out certain variables as subfunctions
and calculates a value that corresponds to the cardinality
for each row/column selection. This calculation is based
upon the discussion in Section 2.1.1. The new cardinality
is compared to the original cardinality. Three particular
cases apply in the simulation procedure when making
row/column partition selections.

CASE 1:

If a set of input variables is specified to appear
entirely in rows and the algorithm selects them as such:
divide cardinality by 2(M-1) and add 2M to the cardinality

for each input of M variables where this occurs.
- Otherwise the cardinality remains the same as the
original cardinality.

CASE 2:

If a set of input variables is specified to appear
entirely in columns and the algorithm selects them as such:
divide cardinality by 2(M-1) and add 2M to the cardinality
for each input of M variables where this occurs.

- Otherwise the cardinality remains the same.
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CASE 3:

If a function can appear partially in rows or columns
and the algorithm selects them as such: divide cardinality
by 2(M-2) and add 2(M-2) to the cardinality for each input
of M variables where this occurs. This is analogous to the
m* (2M) + 2(N-M*m) eyxample in Figure 2.6, where m=2.

- If the function appears entirely in rows or columns
the cardinality is calculated by the rules in Case 2 or 3.

There are other conditions that must be satisfied or the
original cardinality is returned:

1) At least one variable must be a row variable.

2) At least one set of input variables must be entirely
in columns.

3) The final cardinality must be less than the original
cardinality.

In the baseline genetic algorithm positive
decompositions could be allowed if they occur or such
decompositions could be suppressed. Positive decompositions
were always suppressed when the estimated data was used.
Again, a positive decomposition refers to a decomposition
where the new cardinality is larger than the original
cardinality. With positive decomposition suppressed no
cardinality larger than the original cardinality is used as
an estimate. No excursions were tried with the crossover
operator in the baseline genetic algorithm.

In the structured genetic algorithm positive
decompositions were also allowed for the simulated data.
Excursions were also tried with the crossover operator later
in the program to try to improve the search and find more
DFCs. In some cases the compliment of the initial
population or P[0] compliment was taken of the best
performers after the initial search terminated. Observation
of other trials showed that sometimes the DFC occurred at
the compliment of the best cardinality chromosomes found.
These trials did result in finding more DFCs. In some cases
all of the partitions leading to the DFC were found.

Another crossover operator excursion was called the "odd
child fix." This excursion was tried in the structured
search algorithm, producing 4 children if the number of
different alleles was odd between two mating chromosomes.
This excursion was used because observation of a number of
trials seemed to indicate the search will take longer if all
possibilities are not examined initially. 1In this crossover
scheme two crossover points were selected as shown in the
example below. The "odd child fix" improved speed
significantly and performance (ability to find the actual
DFC) marginally on the simulated data. In cases where there
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were an even number of differences between the parents then
structured crossover was used.

Parent A xxxxx
Parent B yyyyy

Child ¢ XXYYY
Child D yyxxx The old method stopped here

after two children.

Child E XXXYY
Child F yyyxx The "odd child fix" added two

children.

4.3 Summary of Experimental Results

Experimental results were analyzed to see if
improvements over "chance without replacement" were realized
by using the structured or baseline algorithms. An
improvement was judged to be a reduction in the number of
partition matrices searched before the DFC was discovered.
Appendix B is a comprehensive table listing all the
experimental results. Figure 4.2 summarizes experimental
data from the performance comparison of the baseline and
structured genetic algorithm approaches. These results are
taken from trials using simulated data to identify the DFC.
The curves shown are averages from typical experiments using
a number of functions. The data show the number of initial
row/column selections made before the DFC was found as a
function of the number of input variables. As Figure 4.2
shows, both the structured and baseline algorithms reduce
the search space compared to the random or chance approach.
As the number of input variables are increased, the
effectiveness of the genetic algorithm approaches are
magnified. The structured approach in particular
dramatically reduces the number of partition matrices that
are examined before the DFC is found. The experimental
results showed that the structured search algorithm can find
an answer up to 10 times faster than exhaustive search for 8
bit functions with simulated data. However, the cardinality
found is sometimes not the minimum cardinality (DFC).
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Figure 4.2. Improvement of Baseline and Structured
Algorithms Over Chance for Simulated Data.

Tables 4.1 to 4.4 provide a detailed representation of
the experimental results for estimated data. The
performance of the baseline and structured algorithms are
compared to "chance without replacement." A comparison can
also be made between the performance of the two algorithms.
The influence of allowing or suppressing positive
decompositions on finding the DFC is examined. Also shown
is the effect of taking the compliment of the initial
population and using the "odd child fix" technique in the
structured algorithm. Tables 4.1 and 4.2 provide results
for all the functions evaluated by each algorithm. The last
two tables present the results for functions which only have
one partition leading to the DFC. This second comparison
was made to see if the experimental results would look any
different for the most difficult searches.

Tables 4.1 to 4.4 are actually two-dimensional arrays.
The columns show the percentage of the time the algorithms
performed better or worse than "chance without replacement"
(see Section 2.2.2.2). Better than chance means the answer
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was found faster than by using "chance without replacement"
procedures. The computational speed refers to the
reduction in the partition space that had to be searched by
the new algorithms compared to "chance without replacement."
For example, 4x the speed means that only 1/4 of the
partition matrices had to be searched as compared to an
exhaustive search ("chance without replacement").

Obviously, this reduction in search space will also reduce
computational time significantly. The rows refer to the
ability to find the actual DFC. The row marked "DFC Found"
refers to the percentages when the actual DFC was found.
"DFC Not Found" refers to the percentage of time when
something other than the DFC was found. Recall that the
structured search algorithm has a termination condition that
can result in the termination of a search before the DFC is
found (see Table 3.4).
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Table 4.1.

With Positive

DFC Found
DFC Not
Found

With Positive

DFC Found
DFC Not
Found

Structured Genetic Algorithm Performance All

Functions.
Decomposition

% Time % Time
Better Worse
Than Than
Chance Chance
41.42 6.82
51.43 0.34

Decomposition Suppressed

% Time
Better
Than
Chance
55.23
32.2

©

% Time
Worse
Than
Chance
12.34
0.23

Computational
Speed
Improvement
Over Chance
7.14x%

Computational
Speed
Improvement
Over Chance
4.47x

With Positive Decomposition and P[0] Compliment

DFC Found
DFC Not
Found

With Positive

DFC Found
DFC Not
Found

% Time
Better
than
Chance
63.80
32.25

% Tine
Worse
than
Chance
3.62
0.34

Computational
Speed
Improvement
Over Chance
4.4%

Decomposition and "Odd Child Fix"

% Tine
Better
than
Chance
64.15
28.34

O,

% Time
Worse
than
Chance
7.15
0.35
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Computational
Speed
Improvement
Over Chance
4.29x




Table 4.2. Baseline Genetic Algorithm Performance All
Functions.

With Positive Decomposition
% Time
Better
than
Chance

DFC Found 69.69

DFC Not 0.0

Found

% Time
Worse
than
Chance
30.31
0.0

With Positive Decomposition Suppressed

% Time

Better

than

Chance
DFC Found 71.85
DFC Not 0.0
Found
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% Time
Worse
than
Chance
27.23
0.92

Computational
Speed
Improvement
Over Chance
1.5x%

Computational
Speed
Improvement
Over Chance
1.56%




Table 4.3.

Structured Genetic Algorithm Performance

Functions With One Decomposition or Partition Leading to the

With Positive Decomposition

DFC Found
DFC Not
Found

% Time
Better
than
Chance
50.84
44 .51

DFC.
% Time Computational
Worse Speed
than Improvement
Chance Over Chance \
4.51 11.49x
0.15

With Positive Decomposition Suppressed

DFC Found
DFC Not
Found

% Time
Better
than
Chance
58.15
41.75

% Time Computational
Worse Speed

than Improvement
Chance Over Chance
0.0 6.85x%

0.11

With Positive Decomposition and P[0] Compliment

DFC Found
DFC Not
Found

% Time

Better

than
Chance
69.13
30.58

% Time Computational

Worse Speed

than Improvement !
Chance Over Chance

0.04 7.35% :
0.25 |

With Positive Decomposition and "0dd Child Fix"

DFC Found
DFC Not
Found

% Time
Better
than
Chance
69.13
30.65

% Time Computational
Worse Speed

than Improvement
Chance Over Chance
0.04 7.15x%

0.18
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Table 4.4. Baseline Genetic Algorithm Performance Functions
With One Decomposition or Partition Leading to the DFC.

With Positive Decomposition

% Time % Time Computational
Better Worse Speed
than than Improvement
Chance Chance Over Chance
DFC Found 87.45 12.55 2.19x
DFC Not 0.0 0.0

Found

With Positive Decomposition Suppressed

% Time % Time Computational
Better Worse Speed
than than Improvement
Chance Chance Over Chance
DFC Found 82.73 16.55 2.25%
DFC Not 0.0 0.73

Found

These tables show several significant findings from the
genetic algorithm performance comparison. In the structured
algorithm allowing positive decompositions led to increased
computational speed over suppression of positive
decompositions, but the algorithm did not locate the DFC as
well. Adding the P[0] compliment or "odd child fix"
routines slowed down the computational speed, but improved
the chance of finding the DFC. In the baseline search
positive decompositions did not make a drastic difference.
Computational speed improvement over chance was still
significant for the baseline algorithm, but not as much as
the structured search. However, the baseline algorithm
found the DFC virtually every time, while the structured
search located local minima a fair amount of the time. For
functions with only one partition leading to the DFC, the
structured and baseline genetic algorithms performed even
better, compared to chance, than for functions with multiple
DFCs. In other words, the more difficult the search the
more benefit the genetic algorithms could provide. The
structured approach showed less dependence on the type of
function.

Recall that the DFCs were identified in this
experimental program by either a simulation procedure or
estimation procedure, they were not located by performing
full function decompositions. Since there were differences
between these two procedures, the performance comparison of
the algorithms showed dependence on the particular procedure
used to identify the DFC. Table 4.5 summarizes some of the
findings from the algorithm performance comparison in
relation to the estimation or simulation procedures. Both
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algorithms were an improvement over chance in the time
required to locate the DFC, whether the estimation or
simulation procedure was used. However, as the table
states, both algorithms sometimes identified a local minimum
rather the DFC for the function. This occurred much more
often using the estimation procedure or estimated data.
Using the simulated data, both algorithms were much more apt
to locate the actual DFC. The table also shows that the
baseline algorithm was better able to locate the actual DFC
when compared to the structured algorithm. This was true

whether the estimated data or simulated data was used.

Table 4.5. Performance Comparison of Baseline and
Structured Genetic Algorithm Approaches.

BASELINE

STRUCTURED

Speed improvement over
chance.

Speed improvement over
chance. Less function
dependent variance.

Rarely gets stuck on a
local minimum using
simulated data.

Rarely gets stuck on a
local minimum using
simulated data, but gets
stuck more often than
baseline.

Often gets stuck on a local
minimum using estimated
data.

Gets stuck more often than
baseline on a local minimum
using estimated data.
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4.4 Analysis of Heufistic/Parameter Variations

Although an exhaustive parametric study was not
conducted, variations in some of the genetic algorithm
parameters and heuristics did allow some conclusions to be
assessed from the experimental results. Many of the
parameters and heuristics were defined differently between
the baseline and structured genetic algorithm approaches,
making their influence often apparent. Table 4.6 describes
the different parameters and heuristics evaluated for each
of the two algorithms. It also shows which parameters were
examined in detail and which were tried, but for one reason
or another were not used in the experiments. The initial
population was either large, using many chromosomes, or
limited, starting out with fewer chromosomes. The crossover
operators used were described previously. Mutation was only
used for the baseline algorithm in some cases. Reproduction
rules were used as described earlier. Tailored probability
refers to the selection strategy shown in Figure 3.1.
"Best" refers to cases where only the best performers at the
front of the sorted population array were reproduced. "N-
best" refers to cases where some of the best lower
performing chromosomes, but not the worst performers, were
allowed to reproduce. Real uniform refers to cases where
chromosomes were selected uniformly throughout the
population for reproduction. Table 4.7 illustrates the
influences of these different parameter and heuristic
settings on the performance of each algorithm.
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Table 4.6.

Key Genetic Algorithm Parameters and Heuristics
Analyzed in Experiments.

Baseline

Initial Population

Structured

Baseline

Mutation

| structured

Rate

No
Shading

Crossover

Baseline Structured

Double

Higher
Order

Higher
Order

Mating
Baseline
Structured
Uniform | Ordered

Legend
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Not Tried

Tried, But Not

Used

Used For Data In

Experiment




Table 4.7. Influence of Key Genetic Algorithm Parameters

Crossover

o Uniform crossover tends to work best
& fastest. It worked best in baseline
search.

o Single or double crossover takes
longer. Single crossover used with
structured search tends to increase
time in baseline search.

o Using the structured crossover
operator with the baseline search to
generate an initial population results
in the search getting stuck in a local
minimum.

Mutation

o If mutation is not used searches
will get stuck in a local minimum as
literature predicts. Trying some
mutation in structured search might
help.

Selection Strategy
for Reproduction

o Tailored probability seemed to work
best in baseline search.

o Limiting mating to N-best in
baseline search caused some local
minimum problems.

o Using something other than tailored
probability for choosing parents in
the baseline search resulted in a
longer search.

o In the structured search mating
using N-best (N>1) relieved some of
the local minimum problems, but caused
it to take much longer.
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5.0 Conclusions

5.1 Conclusions from Experiments

The experiments conducted in this program on the
baseline and structured genetic search algorithms showed
very promising results. Both algorithms performed faster
than chance overall. This is significant since it points
out that elements of both algorithms can be used to reduce
computational time for function decomposition. Speed is
important, but the ability to find the DFC is vital. Both
algorithms showed the ability to find the DFC and yet be
faster than chance. Experiments showed that the structured
search was faster than the baseline, but did not always find
the DFC using estimated data, because of a restrictive
reproduction and termination condition. The structured
search, however, always found the DFC using the simulated
data. A terminating condition that needs to be included in
the baseline algorithm will likely reduce some of its
ability to find the DFC. The accurate performance of these
algorithms for various combinations of heuristics and
parameter settings, along with an increase in speed over
chance, warrants a further investigation of their
applicability.

The structured search algorithm can be tailored to
include additional heuristics that could improve its
performance. Several excursions were tried in this program,
as mentioned previously, such as allowing mating of slightly
"less fit" decompositions. These excursions, however, were
found to only increase the time required for convergence in
the simulated data. They were not tried on the estimated
data.

Both algorithms showed improvement over chance in the
number of partition matrices searched, as the number of
variables increased. The rate of growth of the search space
is still exponential, but has a slower rate of increase.
This is very promising, since as the number of variables
increases, the time required to evaluate a partition also
increases exponentially.

Regrettably, time did not allow a full parametric
analysis of the genetic algorithm approaches. However, the
work performed up to this point looks promising. Both
algorithms can provide a significant speed increase in
finding the DFC. Additional improvements can probably be
attained by using a better method of selecting the initial
population, i.e., correlation techniques and/or increasing
the number of rows in the initial population (see Section
2.2.2). Both algorithms would need to be tailored depending
on the application.
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5.2 Recommendations/Future Work

For limitations that were found, several possible fixes
could be studied to potentially solve the problems. Other
genetic algorithm variations could be investigated,
including both standard and nonstandard practices. The
particular problems that were encountered could be studied
more to identify particular heuristics or theories that may
prove useful. Some were tried in this program already.
Additional work could identify better ways to generate the
initial population. The P[0] compliment, for example, could
be applied to more of best performers than just the top
ones.

Some of the open issues that may require additional
investigation include the presence of a large number of
discontinuities in the estimated data. The estimated data
may not have provided a very accurate estimate of the DFC.
Obviously, it would be beneficial to try both algorithms on
actual data, or in other words allow a function to be
completely decomposed to the DFC. A comparison could then
be made between the actual data and the estimated and
simulated data. A program called FLASH (Function Learning
and Synthesis Hotbench) resides at the Avionics Directorate
that carries out decompositions more thoroughly than those
algorithms used in this study. This program could be
applied to functions examined in this study to verify the
effectiveness of the structured and baseline algorithms.
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Appendix A.
Correlation Partition Selection Algorithm Paper
Michael J. Noviskey

30 Aug 92
1.0 Introduction

This memo documents work done on a partition selection algorithm
for function decomposition as described in Ref 1. This memo
includes a brief description of the need for partition selection
algorithms; a candidate algorithm for generation of coefficients
corresponding to the input variables of a function; how to use
the coefficients in selecting rows and columns of a partition
matrix; and several examples and observations about this
algorithm.

2.0 The need for partition selection

In order to decompose a function the Ada Function Decomposition
(AFD) algorithms essentially perform an exhaustive search, with a
few limiting heuristics. There are about two raised to the
number of input variables partition matrices to be searched for
the original function. If the function decomposes, more
functions of lower complexity are produced for further
decomposition. This process is continued until functions of the
lowest complexity are found. No attempt was made to select
partitions that would decompose to some low cost initially. If
this were done it could limit the search space or prune the
search tree later on. No attempt was made to develop heuristics
which would predict good partitions for decomposition. These
choices were made in order to meet some of the objectives of
Pattern Theory I. But in order to develop a practical algorithm,
some type of partition selection algorithm which can guide the
search needs to be developed.

2.1 Algorithm description

The algorithm description is divided into two main parts. The
first is a description of generation of coefficients which
correspond to input variables. The second is utilization of the
coefficients to select row and column variables for the partition
matrix.

2.1.1 Coefficient Generation

For each defined value of the function a coefficient for each
input variable is incremented if the value of the input variable
matches the value of the function. The coefficient is
decremented if the input variable does not match the value of the
function. The following BASIC subroutines provide a detailed
implementation. These routines assume that true vacuous
variables have been removed. If vacuous variables are not
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explicitly removed as a preliminary step, they will increase the
run time by increasing the size and number of partition matrices
which must be considered.

Two routines not documented here are ZeroVector and GetBinary.
ZeroVector sets the elements of a one dimensional array to zero.
And GetBinary returns a binary vector representation of a base
ten argument. 1In this case the vector returned from GetBinary
represents the input to the function.

SUB GenCoefs (Function$, A% (), X%3())
]

' The purpose of this routine is to generate partition
selection

' coefficients.

]

'  Function$ => A string representation of a Function.

]

roXs$ => The Nth value of the function

' {0,1,x}

1)

'X%() => Binary vector representation of input
for the

' Nth value of the function.

' Vector of (0,1}

)

t A3%() => Partition selection coefficients.

' Vector of integers

1

ZeroVector A%(): ' First set partition
selection
' coefficients to zero.
FOR N% = 1 TO LEN(Function$): ' For each element of
the function:
X$ = MIDS$(Function$, N%, 1): ' Get it's value.

' If this element of
the function

' is defined {0,1}.

IF X$ = "0" OR X$ = “1" THEN
GetBinary (N% - 1), X%(): ' Get it's binary
input vector.
GenCoef VAL(XS$), A%(), X%(): ! Modify the
Coefficients.
ELSE

' If this element of
the function
' is not defined then
do nothing.
END IF
NEXT N%
END SUB
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SUB GenCoef (Value%, A%(), X%())
1

' The purpose of this routine is to increment or
decrement
' partition selection coefficients depending on whether the
associated input matches the Nth Value of the function.

]
]
' Value$ => The Nth value of the function
! {0,1}
]
vOoX%() => Binary vector representation of input for
the
' Nth value of the function.
! Vector of {0,1)}
]
' OA%() => Partition selection coefficients.
' Vector of Integers
| ]
' For each input:
FOR I% = LBOUND(X$%) TO UBOUND(X%)
' If it matches the
value
' of the function
IF X%(I%) = Value% THEN
A% (I%) = A%(I%) + 1: ' increment it's
coefficient;
ELSE : ' otherwise
A% (I%) = A%(I%) - 1: ' decrement it's
coefficient.
END IF
NEXT I%
END SUB

2.1.2 Coefficient Utilization

The above procedure will produce coefficients associated with the
input variables. Selecting groups of coefficients of the same
magnitudes as column or row variables can result in a good choice
for a partition matrix. Since coefficients of the same absolute
value may or may not result in a decomposition, combinations
within a group must also be tried. However, combinations across
groups do not appear to need to be tried. At least no case has
been found, where combinations across groups resulted in a
decomposition.
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To illustrate this procedure, suppose we have three sets of
coefficients al, a2, a3; bl, b2; and cl. Where al, a2, and a3
are of the same absolute value; bl and b2 are of the same
absolute value. The following combinations must be tried as
column variables, again assuming vacuous variables have been
removed. Combinations which are tried as column choices are shown
between the [] brackets.

[(al, a2, a3), (b1, b2)], [(al, a2, a3), (bl)],

[(al, a2, a3), (b2)],

[(al, a2, a3), (c1)], [(al, a2, a3)],

[(al, a2), (b1, b2), (cl1)],

[(al, a2, a3), (bl), (c1)], [(al, a2, a3), (b2), (cl)],
((al, a3), (b1, b2), (cl)], [(a2, a3), (bl, b2), (cl)],
[(al1, a2), (b1, b2)], [(al, a3), (bl, b2)],

[(a2, a3), (b1, b2)],

[(al, a2), (cl)], [(al, a3), (cl)), (
[(al), (b1, b2)), ((a2),(bl, b2)),((a3
[(al), (c1)],

[(a2),(cl)], [(a3), (cl)], [(bl, b2), (c1)], [(b1l), (c1)],
[(b2), (c1)], and [(b1l, b2)].

(a2, a3), (el)],
), (b1, b2)],

Notice that combinations like ((al, a2), (bl)) were not tried,
since no case has been found were choosing some elements from one
group and some from another results in a good decomposition.

This results in twenty six rather than fifty six partitions (not
testing for vacuous variables) which would have been required to
perform an exhaustive search of a six variable function . The
percent reduction in search space is more dramatic as the number
of variables increases, but it depends on the number of groupings
and number of elements within a group. The worst case occurs
either when all the coefficients are the same or all are
different. Then the entire space must be searched again. The
best case occurs when the number of groups is about equal to the
number of elements in the groups. The treatment of the actual
number of partition matrices which must be tried as a function of
number of groupings and grouping size is a little more complex
and still needs to be addressed.

2.2 Examples
2.2.1 A very simple example

This example illustrates the column selection procedure on a very
simple function of three variables. Initially Al, A2 and A3 are
incremented, since X1, X2 and X3 all match the first value of the
function. Al and A2 are incremented again since X1 and X2 match
the second value of the function, but A3 is decremented since X3
does not match the function value. This process is repeated for
the entire function until the final values 2, 6 and 2 are found
for Al, A2 and A3. (see figure below). Since the coefficients
for Al and A3 have the same magnitudes, this suggests that X1 and
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X3 should be grouped. Below are three of the partition matrices

which can be formed from the function.

Note that when X1 and X3

are selected as column variables, column multiplicity, Nu, is

minimized. This function

X1 X2
0 0
0 0
0 1
0 1
1 0
1l 0
1 1
1 1

X3 F Al A2 A3
0 0 1l 1 1
1 0 2 2 0
0 0 3 1l 1
1 1 2 2 2
0] 0 1 3 3
1 0 0 4 2
0] 1 1 5 1l
1 1 2 6 2

could be broken down into F1 ( F2 ( X1, X3), X2), although no
cost savings would occur for a three variable function.

X2 & X3

X1 01

00
0011

Nu = 3

X1 & X3 X1 & X2
X2 0000O0 X3 0001
0111 0101
Nu = 2 Nu = 3

2.2.2 A Non Decomposable Function

The partition matrices shown for the four variable function shows

that it will not decompose.

Yet the partition selection

algorithm will generate different coefficients.

X1 & X2 X1l & X3 X1l & X4
X3 1011 X2 1010 X2 1000
& 1101 & 1101 & 1100
X4 0000O0 X4 0011 X3 1111
1110 0010 0110
X1 & X2 & X3 X1l & X2 & X4
X4 10111101 X3 10110000
00001110 11011110
X1l & X3 & X4 X2 & X3 & X4
X2 10110011 X1 11100011
11010010 01010010

The coefficients generated

by the partition selection algorithm

were -2, -2, 6, =6 respectively. This suggests that the first
matrix or one of the last four would give a good decomposition.

Yet no decomposition works.
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2.2.3 Absolute vs Signed Values Consider the function:
((X1 AND (NOT X2)) OR (X3 AND (NOT X4)))
Which has partition selection coefficients -6, 6, -6, 6. If

partition selection were based on signed value then the following
matrices would be tried.

X1l & X3
X2 00O00O0
& 1010
X4 1100
1110
X1l & X2 & X3 X1l & X2 & X4
X4 00001010 X3 00001100
11001110 01011110
X1l & X3 & X4 X2 & X3 & X4
X2 00101111 X1 00111011
00100010 00001010
These would not be tried.
X1l & X2 X1l & X4
X3 0010 X2 0011
& 0010 & 1011
X4 1111 X3 0000
0010 1010

If signed values were used instead of absolute values the optimal
decomposition would have been missed. Use of absolute values of
the coefficients, however, increases the search space since more
coefficients of the same absolute value are likely to exist. In
this rather simple example all possible partition matrices would
have been tried. Sign changes can result from negation of a
variable or a function (i.e., NOT(OR) => NAND).

2.2.4 A Final Example

An attempt was made to cause the partition selection algorithm to
fail by "designing" a function which would force an incorrect
grouping. This was done by combining the same function on
different sets of input variables with an OR gate. Since each
subfunction would have the same coefficients, and simply
combining them with an OR gate would cause this to be transferred
to the output causing an incorrect grouping.
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Choose an arbitrary function:

G(x, ¥, 2) = (x AND (y OR 2))

Combine two of these with an OR gate:

F(X1, ..., X6) = G(X1, X2, X3) OR G(X4, X5, X6)
The coefficients generated for this function are 30, 10, 10, 30,
10 and 10 respectively. This suggests grouping X1 and X4; and X2,
X3, X5, and X6. This appears to be an the desired incorrect
grouping, since the intuitively correct groupings would have been
X1, X2 and X3; and X4, X5 and X6.
However, if the partition is formed:

X2, X3, X5 & X6

X1 000000000O0OOCOOOOO
& 011101110111 0111
X4 0000111111111111
01111211111 111111
111011101110111 =>X7
000111111111111 =>X8
Further decompositions result.
F X7 X8
X1 & X7 X2 & X3 X2 & X3
X4 0001 X5 0111 X5 0000
& 00O01 & 0111 & 1111
X8 0001 X6 0111 X6 1111
1111 0111 1111

Notice that X7 is vacuous in X5 and X6; X8 is vacuous in X2 and
X3. In fact:

X7 = X2 OR X3,
X8 = X5 OR X6,
and o

F = (X1 AND X7) OR (X4 AND X8)

which was the original function.
Several more experiments like this were performed using AND and
XOR gates and more variables with similar results. An initial

apparently incorrect grouping of subfunctions decomposed to the
original function.
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3.0 Summary

The procedure for calculating coefficients has been implemented
in a BASIC program. The procedure for selecting partitions has
not yet been automated. Because of the way the algorithm selects
coefficients at various levels of decomposition, it needs to be
implemented in a program which completes the decomposition.
Examining initial groupings does not mean improperly selected
groupings will not be eliminated at a later stage of
decomposition via generation of vacuous variables (See example
2.2.4).

The partition selection algorithm described seems to be a good
method for reducing the search space for functional decomposition
programs like AFD. There is no theoretical basis for this method;
this needs development. It is yet not known if it covers the
entire search space needed for optimal decompositions, since at
this time only a few hand done, machine assisted, examples have
been tried. Even if it does not provide complete coverage of the
search space, it usually provides a low cost decomposition and
could be a good starting point for limiting the search tree via
pruning techniques.

There are still a number of questions about this technique. Does
it cover the entire required search space? In what order should
grouping be tried? How well does it work with partial functions?
Only a few examples have been tried, but the technique seems
promising. Further experimentation is needed. Incorporating
this algorithm in the Function Learning Synthesis HotBench the
C++ version of AFD is required to answer these and other
questions.
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Appendix B.
Experimental Data

Summary of data: The following pages give a summary of
the experimental runs for actual data.

Key:
Baseline / Structured / Structured P[0] compliment / Structured odd child
fix - refers to the particular algorithm used.

all functions - more than one partition selection leads to an optimal decomposition
functions with one decomposition - only one partition selection leads to an optimal decomposition

Negative decomposition suppressed / Negative decomposition allowed - if values greater than table
size were allowed in the fitness factor.

DFC Found / DFC not Found - number of functions in which the algorithm found or did not find the
optimal partition.

faster / stower - number of cases the algorithm ran slower or faster than a random search.

chance / actual - expected number of partitions searched randomly before an optimal partition is
found and number of average number of partitions actually searched by the genetic algoithm before
it terminated.

hits - number of optimal partitions in the function.

improvement - the actual improvement factor over chance (summed over runs - not average)
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Structured all

functions
Negative
decomposition
suppressed
DFC DFC not chance actual  hits improvment
Found Found
faster slower  faster slower
131 119 3 4.36 21 0.39
105 52 93 5.72 3N 3 6.11
205 1 &4 3.9 2.9 12 2.00
48 0 202 5.72 3.3 3 5.35
153 0 97 7 3.73 1 9.65
77 173 5.72 3.28 3 5.43
216 34 5.3 3.48 4 3.53
115 2 132 1 5 3.07 5 3.81
133 117 3.1 3.62 20 0.70
128 122 3.58 3.99 15 0.75
250 0 0 0 7 4.27 1 6.63
13 0 237 7 4.38 1 6.15
19 0 231 7 4.44 1 5.90
159 6 78 7 4.39 3.38 8 2.01
131 1 114 4 5.3 3.81 4 2.81
123 127 4.58 5.03 7 0.73
186 64 1 0.8 126 1.15
78 0 172 6.22 4.26 2 3.89
156 18 76 6.23 5.06 2 2.25
250 0 4.63 1 5.17
214 0 36 7 3.79 1 9.25
210 0 40 7 3.72 1 9.7
137 1} 113 7 4.3 1 6.50
216 0 34 7 3.74 1 9.58
106 0 144 7 4.98 1 4.06
31 0 216 3 7 5.56 1 2.7
3590 802 2093 15 6500 116.22
percent 4.47 times
better
55.23%  12.34% 32.20% 0.23% than
chance
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functions

with one
decomposition
DFC DFC not chance actual  hits improvment
Found Found
faster slower faster slower
47 3 7 5.3 1 3.25
50 0 7 5.39 1 3.05
44 6 7 6.27 1 1.66
22 28 7 7.1 1 0.91
50 0 7 5.38 1 3.07
50 0 7 5.14 1 3.63
50 0 7 5.3 1 3.25
41 9 7 6.26 1 1.67
40 10 7 6.26 1 1.67
40 9 1 7 6.23 1 1.71
21 26 3 7 7.22 1 0.86
455 91 4 550 24.72
82.73%  16.55% 0.00% 0.73% 2.25 times
better
than
chance
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functions

with one
decomposition
DFC DFC not chance actual  hits improvment
Found Found
faster slower faster slower
213 0 37 7 3.8 1 9.19
250 0 0 0 7 4.29 1 6.54
119 0 131 7 3.77 1 9.38
13 0 237 7 4.25 1 6.73
250 0 7 4.37 1 6.19
250 0 0 7 3.7 1 9.85
250 0 0 7 3.72 1 9.7
139 0 1M 7 4.31 1 6.45
250 0 0 7 3.6 1 10.56
119 0 130 1 7 5.1 1 3.73
48 1 195 6 7 5.7 1 2.46
1901 1 841 7 2750 80.80
69.13% 0.04% 30.58% 0.25% 7.35 times
better
than
chance
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DFC
Found
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Summary of data: The following pages give a summary
the experimental runs for simulated data.

Key:

baseline / sStructured - refers to the particular algorithm used.
groups - the number of groups inputs are devided into for row column selection
hits - number of optimal partitions in the function.

improvement - the actual improvement factor over chance (summed over runs - not average)
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